By using this web site you accept our use of cookies. More information about cookies
Accept
Infopulse - Expert Software Engineering, Infrastructure Management Services
By using this web site you accept our use of cookies. More information about cookies
Accept
Infopulse - Expert Software Engineering, Infrastructure Management Services
Infopulse - Expert Software Engineering, Infrastructure Management Services
reCAPTCHA
Send message Please fill in this quick form and we will send you a free quote shortly.
* Required fields
Your privacy is important to us. We will never share your data.
Subscribe to our updates Be among the first to get exclusive content on IT insights, innovations, and best practices.
* Required fields
Your privacy is important to us. We will never share your data.
Subscribe to our Vacancies Please fill in this quick form to be among the first to receive our updates.
* Required fields
Your privacy is important to us. We will never share your data.
Photo of Dr. Bogdan Tanygin Send an email to Dr. Bogdan Tanygin Please fill in this quick form to contact our expert directly.
* Required fields
Your privacy is important to us. We will never share your data.
Infopulse - Expert Software Engineering, Infrastructure Management Services
Read the Full Case Study Don't miss the most interesting part of the story!
Submit this quick form to see the rest and to freely access all case studies on our website.
* Required fields
Your privacy is important to us. We will never share your data.

Implementation of Convolutional Neural Network for Manufacturing Needs

AI-based device recognizes data from old gauges in less than 2 seconds

Client: Integrated innovation service provider
Industry: Manufacturing
Location: Germany
Employees: 50+

Business Challenge

Many plants with continuous production still rely on manual data collection from old gauges. Installed years ago, they perfectly fulfill their main functions. Replacing such working equipment with the next-gen APIs can result in large expenses. Hence, manufacturers seek economically viable solutions to automate data retrieval and sending it to the cloud.

Our customer, known for its innovative digital initiatives, asked us to help with the development of a Computer Vision and IoT solution for their metal manufacturing client. It could automate taking readings of old gauge equipment, thus optimizing manufacturing performance and reducing human error. It is rather complicated to retrofit and integrate old legacy gauge equipment (weighers, thermocouples, barometers, sensors, etc.) into a modern IT ecosystem according to the process digitization requirements of Industry 4.0 / OPC Unified Architecture and IoT standards. We had to figure out how to quickly recognize data on gauge pointers or 7-segment display with a pocket-size device.

Solution

Infopulse’s R&D team trained a convolutional neural network (CNN) to instantly recognize digits on the customer’s gauges despite image defects from 7-segment LCD display such as glares, white spots, reflections of objects or people, etc. To vary digits, our designers processed 10 GB of gauge images received from a manufacturer, their ad hoc image updates and studied other open source examples, ending up with 20 GB of images for CNN building.

The team chose Theano & Keras open source tech stack as their Machine Learning Toolkit and performed one-time feeding of all images to a neural network on a powerful Amazon AWS Virtual Machine. Then, we started the actual training of a network including counting, discerning small and large numbers, transforming the pointer position on a circular gauge into specific digital value. Upon reaching the needed result, the compiled CNN was deployed to Raspberry Pi 3 device with the HD camera.

Technologies: Raspberry Pi 3, ARM32, Theano, Keras, Python, AWS

Technology domains: Computer Vision, IoT, Embedded, Data Science

Business Value

  • AI image recognition is achieved in less than 2 seconds with a small handheld device.
  • Received data is automatically stored in a database via Wi-Fi.
  • MVP release was developed in 2 weeks whereas production-ready system was released in 3 months by the Infopulse team of two engineers and one architect.
  • We helped the customer save development costs by utilizing Theano & Keras free and open source software (FOSS).
  • Achieving high fault tolerance due to the reliability of chosen hardware and developed bug-free software.
  • On top of that, after reaching one customer, the developed solution made interested other huge clients, such as automotive and beverage producers.